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Abstract

This paper describes a self-contained, automated methodology for ow control along with

a validation of the methodology for the problem of boundary layer instability suppression.

The objective of control is to match the stress vector along a portion of the boundary

to a given vector; instability suppression is achieved by choosing the given vector to be

that of a steady base ow, e.g., Blasius boundary layer. Control is e�ected through the

injection or suction of uid through a single ori�ce on the boundary. The present approach

couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system

and optimality conditions from which optimal states, i.e., unsteady ow �elds, and controls,

e.g., actuators, may be determined. The results demonstrate that instability suppression

can be achieved without any a priori knowledge of the disturbance, which is signi�cant

because other control techniques have required some knowledge of the ow unsteadiness

such as frequencies, instability type, etc.

1 This research was supported by the National Aeronautics and Space Administra-
tion under NASA Contract No. NAS1-19480 while the authors (except the �rst) were in
residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681.
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1. INTRODUCTION

In the last decade, increasing attention has been devoted to the development of tech-

niques capable of enhancing our ability to control the unsteady ow in a wide variety of

con�gurations such as engine inlets and nozzles, combustors, automobiles, aircraft, and

marine vehicles. Controlling the ow in these con�gurations can lead to greatly improved

e�ciency and performance, while decreasing the noise levels generally associated with the

otherwise unattended unsteady ow. Depending on the desired result, one might wish to

delay or accelerate transition, reduce drag or or enhance mixing. There might be a need to

postpone ow-separation, increase lift or manipulate a turbulence �eld. Gad-el-Hak (1989)

and Gad-el-Hak & Bushnell (1991) provide an excellent introduction to and overview of

various control methodologies.

Small improvements in system performance often lead to large payo�s. For example,

Butter (1984) estimates that a 5 percent improvement in landing maximum lift coe�cient

(Cl(max)) can translate to a 25 percent increase in payload, while a 12 to 15 percent

payload increase could result from only a 5 percent improvement in the takeo� Cl(max).

As further evidence of the gains of a well-controlled system, Cousteix (1992) notes that 45

percent of the drag for a commercial transport transonic aircraft is due to skin friction on

the wings, fuselage, �n, etc., and that a 10 to 15 percent reduction of the total drag can

be expected simply by laminarizing the ow over the wings and the �n. This translates

into a reduction in fuel requirements, improved performance, and/or increased payload.

Muirhead (1978) has shown with a wind tunnel investigation that control of ow separation

on a tractor-trailor truck can reduce the drag by 30 to 40 percent of the baseline truck

con�guration. This translates into a savings of millions of barrels of oil per year.

Encouraged by the potential for huge rewards with what seems to be a rather modest

input, research into ways of achieving the above gains is attaining increasing importance. In

many technologically important situations, the ow usually starts from a smooth laminar

state which is inherently unstable and develops instability waves downstream. These insta-

bility waves grow expoenentially entailing nonlinear interactions, which lead ultimately to

full developed turbulence. This process is present in various forms in most systems. There-

fore, one goal of a good control system is to inhibit strongly, if not eliminate altogether,

the instabilities which lead to an undesirable transitional or turbulent state.
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1.1 The Wave-Cancellation Concept

The simplest form of control which might achieve this objective is the wave-

cancellation approach, based on the premise (mostly correct) that the instability mecha-

nisms in a low-speed transition are crucially dominated by a single two-dimensional insta-

bility wave; therefore, cancelling this wave will preclude the nonlinear interactions leading

to laminar-turbulent transition. The wave-cancellation method further assumes that a

wavelike disturbance can be linearly cancelled by introducing another wave equal in am-

plitude but opposite in phase, and thus it is mostly applicable to systems governed by linear

or quasi-linear equations. The key is to determine the parameters of the downstream wave

which counter (cancel) the evolution of the upstream generated wave. Although there

is little theoretical work on this topic, there are a number of experiments and numerical

simulations which validate this approach. Both passive and active forms of control are

possible, and an active control might or might not make use of feedback. Passive con-

trol makes use of gemetrical and physical characteristics to a�ect the ow. There is no

wave-dependent input by an external device which might require energetic input. In the

passive case without feedback, one inputs a wave with the proper phase and amplitude

downstream of the source (actuator), using knowledge of the upstream input. Better and

more robust results can be achieved via active control with feedback. This technique iden-

ti�es the characteristics of the wave downstream of the actuator using a sensor, and feeds

back (time-dependent) information to the actuator. Di�erent types of controls, all leading

to di�erent levels of wave-cancellation have been studied, both experimentally and numer-

ically. The aim is of course to achieve the perfect cancellation, wherein the input wave has

the same shape as the input wave at one or several locations on the body, and exactly �

radians out of phase. Of course, this is not achievable in practice, as system imperfections

and nonlinearities prevent perfect wave cancellation.

Most of the experiments, aimed at verifying the wave-cancellation concept, were con-

ducted on the at plate, except those of Ladd & Hendricks (1988), Pupator & Saric

(1989), and Ladd (1990), who considered axisymmetric bodies. Many of these experiments

were conducted in water tunnels. Vibrating wires (Milling 1981), hot strips (Liepmann &

Nosenchuck 1982a,b), suction and blowing (Pupator & Saric 1989; Ladd 1990), electromag-

netic generators (Thomas 1983), and adaptive heating (Ladd & Hendricks 1988), are some

of the methods that were used to generate the controlling wave. All these input mecha-

nisms give the experimenter control over the phase and amplitude of the input wave. The

experimentalists met with varying degrees of success. Among the more successful studies
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were those of Milling (1981) and Thomas (1983) who achieved at least an 80 percent re-

duction in the input amplitude of the 2-D wave (with 0.6%-1% amplitude). However, it

was not possible to achieve relaminarization, probably because of the three-dimensionality

of the ow resulting from the interaction between background disturbances and the pri-

mary 2-D wave. As expected, the studies conducted on axisymmetric bodies produced

relatively less wave-cancellation since these ows are highly three-dimensional. Further-

more, good wave-cancellation results requires a linear system with constant coe�cients.

This requirement is clearly violated for a ow over a body with curvature.

In addition to the aforementioned experiments, several theoretical (i.e., linear com-

putations and theory) and computational studies (i.e, nonlinear simulations) have focused

on understanding the physics of this wave-cancellation process. Maestrello & Ting (1984)

provided a linear asymptotic analysis to demonstrate the relationship between the input of

localized disturbances and their e�ect on the Tollmien-Schlichting (TS) instability waves

present in the wall-bounded shear ow. They showed that small amounts of local peri-

odic heating could excite disturbances that actively control the TS waves which propagate

in a boundary layer on a at plate. Analogous to the experiments, several wave input

mechanisms were considered. In one of the early Navier-Stokes simulations of active con-

trol, Biringen (1984) used suction and blowing at the wall in a channel ow. He observed

approximately a 50 percent reduction in the amplitudes of the 2-D instabilities and a de-

crease in the growth of the 3-D instabilities. The Reynolds stress originally generated

by the waves was all but removed. On the other hand, Metcalfe, Rutland, Duncan &

Riley (1985) studied the e�ect of a moving wall on unstable waves traveling in a laminar

ow on a at plate. The simulations were based on the Navier-Stokes equations solved

within a temporal framework. An energy analysis revealed that the wall motion causes

the Reynolds-stress term to become negative, which implies a feed of energy from the

perturbed ow back into the mean ow. In e�ect, this energy analysis showed how a per-

turbation to an unstable ow can be stabilizing. However, an instability wave eventually

formed downstream of the control, with the same growth rate as the uncontrolled wave.

This is a clear indication that the cancellation was not complete. Although intuitively

obvious, until the work of Bower, Kegelman, Pal & Meyer (1987) and Pal, Bower & Meyer

(1991), it was not known that perfect cancellation could be obtained within the context of

linear theory (for which the mean ow is independent of the propagating direction. They

used the 2-D Orr-Sommerfeld equation to study and control instability-wave growth by

superposition, and showed, within the limits of linear stability theory and the parallel-ow
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assumption, that single and multifrequency waves can be cancelled. The basic conclusions

drawn by the early experimentalists were con�rmed by the studies of Laurien & Kleiser

(1989) and Kral & Fasel (1989). They showed that it was possible to delay or accelerate

(but not eliminate) transition by appropriately (either by heating or by suction and blow-

ing) superposing disturbances out of (in) phase with the primary TS wave. To get the best

results required that the control be applied in the linear stages of transition, before the

secondary instability sets in. Similar results were also reported by Danabasoglu, Biringen

& Street (1991).

All of the previous active-control studies were undertaken with the a priori assump-

tion that wave cancellation was accomplished by the linear superposition (or forcing) of

waves with � radian phase shifts, or one-half wavelength/period phase shifts. None of

these previous studies were able to achieve complete (or exact) instability removal (wave

cancellation) from the ow, except for the linear studies reported by Milling (1981) and

Pal, Bower & Meyer (1991), where the limitations of hydrodynamic linear instability the-

ory were assumed. In practice, complete cancellation is not possible with a single actuator

because any small residual of the cancelled wave will grow exponentially with downstream

distance. Therefore, the wave will reappear some small distance downstream.

Although there have been quite a few studies on the so-called wave-cancellation ap-

proach, no e�ort was made to demonstrate clearly that wave cancellation was in fact

responsible for the observed reduction in wave amplitude. Recently, Joslin, Erlebacher &

Hussaini (1995) performed a numerical experiment which served to unequivocally demon-

strate the link between linear superposition and instability suppression. To ensure that

linear superposition of individual instabilities was, in fact, responsible for the results found

in previous experiments and computations, they carried out three simulations with i) only

the disturbance; ii) only the control; and iii) using both disturbance and control, which

is the wave-cancellation case. By discretely summing the control-only and forcing-only

numerical results, they found that this linear superposed solution is identical to the wave-

cancellation results. These tests cleary verify the hypothesis that linear superposition is

the reason for the previous experimental and computational results.

From the above experiments, linear computations and nonlinear simulations, several

common features emerge: i) It is impossible to achieve perfect wave cancellation unless the

system is linear, with constant coe�cients; ii) the e�ciency of wave cancellation decreases

as the system becomes more nonlinear; iii) as the geometry of the con�guration becomes

more complex, cancellation becomes more di�cult; and iv) the current approaches require
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foreknowledge of the instability wave characteristics, such as its frequency and amplitude.

1.2 Optimal Control Theory

The optimal control theory provides an approach which does not require a priori

knowledge of the ow characteristics. The goal of optimal control theory is indeed to

minimize or maximize an objective function in a robust manner. When the ow is time-

dependent, and a strong function of initial conditions, it becomes di�cult to establish the

precise controls that will achieve the desired e�ect. Wave-cancellation, as discussed above,

only works well when the input wave has a dominant frequency, and its properties are

known. Then (either in a passive fashion, or through a feedback mechanism), one seeks to

cancel its e�ect while still in a linear regime. In practice, there are many waves, which can

interact nonlinearly in ways not always known in advance. Rather than try to cancel the

incoming waves, one seeks appropriate controls in other ways. One means of achieving this,

without an extensive search over the space of possible controls, is to postulate a family

of desired controls (e.g., an arbitrary time-dependent amplitude and a speci�ed spatial

distribution), and an objective function (i.e., stress over a region of the plate). Then,

through a formal minimization process, one derives a set of di�erential equations, and

their adjoints, whose solution produces the optimal actuator pro�le (among the speci�ed

set). While the solution to this set of equations cannot be accomplished in real time, the

results can be applied using standard passive or active control mechanisms. The advantage

is that entire collections of controls can be studied simultaneously, rather than one at a

time.

Optimal control methodologies have been recently applied to a variety of problems in-

volving drag reduction, ow and temperature matching, etc. to provide more sophisticated

ow control strategies in engineering applications. This is possible because computational

uid dynamics (CFD) algorithms have reached a su�ciently high level of maturity, gener-

ality, and e�ciency so that it is now feasible to implement sophisticated ow optimization

methods, which lead to a large number of coupled partial di�erential equations. Optimal

control theory is quite mathematical, and its formal nature is amenable to the derivation of

mathematical theorems related to existence of solutions and well-posedness of the problem.

Two recent surveys of the mathematical theories of optimal ow control are Gunzburger

(1995) and Borggaard et al. (1995). For a mathematical treatment of a problem very

similar to the one considered in this paper, one may consult Fursikov, Gunzburger & Hou

(1995). Optimal control techniques will not provide the real time control that one is ul-

timately interested in, but by systematically computing the best control within speci�ed
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tolerances, with a given objective function, it will be possible to develop strategies (active

or passive) to control a wide variety of disturbances). For example, to e�ectively control

a boundary-layer transition due to the interaction of cross-ow and TS wave using pe-

riodic heating and cooling, optimal control would allow: 1) a determination of the best

objective function to use for a given type of control (some are better than others), and

2) provide insight into the relationship between the time dependence of the control and

the input waves. This insight could then be built into a neural network, or other type of

self-learning system, to allow e�ective control over a wide range of input parameters.

1.3 The Current Approach

The methodology of the current paper is based on de�ning a control mechanism and

an objective for control, and then �nding, in a systematic and automated manner, controls

that best meet the objecive. In the present setting, an objective or cost functional is

de�ned that measures the \distance" between the measured stresses, and their desired

values along a limited section of the bounding wall and over a speci�ed length of time.

One may interpret the objective functional as a \sensor," i.e., the objective functional

senses how far the ow stresses along the wall are from the corresponding desired values.

To control the ow, we imposed time-dependent injection and suction along a small ori�ce

in the bounding wall. Although the spatial dependence of the suction pro�le is speci�ed (for

simplicity), the optimal control methodology determines the time-variation of this pro�le.

However, unlike feedback control methodologies wherein the sensed data determines the

control through a speci�ed feedback law or controller, here the time-dependence of the

control is the natural result of the minimization of the objective functional. This scenario

is shown in Figure 1. We have a sensor that feeds information to a controller that in turn

feeds information to the actuator. However, in the optimal control setting, the sensor is

actually an objective functional and the controller is a coupled system of partial di�erential

equations that determine the control that does the best job of minimizing the objective

functional. The present active-control approach is demonstrated for the evolution and

automated control of of spatially growing 2D disturbances in a at-plate boundary layer.

As the length of time over which the minimization process is increased, we recover the

results obtained by wave cancellation, thus validating the approach. The ultimate goal

of this line of research is to introduce automated control to external ows over realistic

con�gurations such as wings and fuselages, and to devise novel ow control techniques.
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2. THE OPTIMIZATION PROBLEM

2.1. The state equations

Let 
 denote the ow domain which is the semi-in�nite channel or boundary layer

[x � 0, 0 � y � h], where h is the location of the upper wall for the channel or the

truncated freestream distance for the boundary layer. Let � denote its boundary and let

(0; T ) be the time interval of interest. The inow part of the boundary [x = 0; 0 � y � h]

is denoted by �i and the part of the boundary on which control is applied (i.e., along

which the suction and blowing actuator is placed) by �a which is assumed to be a �nite

connected part of the lower boundary (or wall) [x � 0, y = 0]. Solid walls are denoted

by �w; for the channel ow, �w is the lower boundary [x � 0, y = 0] with �a excluded

and the upper boundary [x � 0, y = h]; for the boundary layer ow, �w is only the lower

boundary with �a excluded. For the boundary-layer case, the upper boundary [x � 0,

y = h], which is not part of �w, is denoted by �e. Controls are only activated over the

given time interval t 2 (T0; T1), where 0 � T0 < T1 � T .

The ow �eld is described by the velocity vector (u; v) and the scalar pressure p and

is obtained by solving the following momentum and mass conservation equations

@u
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+ u
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@x

�
2
@u

@x

�
� �

@

@y

�
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= 0 in (0; T ) � 
 ; (3)

subject to initial and boundary conditions:
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�
in 
 ; (4)
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������
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8>><
>>:

�
g1
g2

�
in (T0; T1)

�
0
0

�
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�
u

v

������
�w

=

�
0

0

�
in (0; T ) ; (7)

and

(u; v; p)! base ow;
@u

@x
! 0; and

@v

@x
! 0 as x!1 : (8)

Here, the initial velocity vector (u0(x; y); v0(x; y)) and the inow velocity vector

(ui(t; y); vi(t; y)) are assumed given and the base ow is assumed to be Poiseuille ow

for the channel case and Blasius ow for the boundary-layer case. The above system holds

for both the channel and Blasius ow cases; in the latter case, the upper boundary is not

part of �w and the additional boundary condition

uj�e = U
1

and p� 2�
@v

@y

�����
�e

= P
1

in (0; T ) (9)

is imposed, where U
1
and P

1
denote the free-stream ow speed and pressure, respectively.

The particular form of the viscous terms in (1) and (2) is necessary in order to correctly

interpret some boundary integrals that will appear below.

The control functions g1(t; x) and g2(t; x) which give the rate at which uid is injected

or sucked tangentially and perpendicularly, respectively, through �a are to be determined

as part of the optimization process. In order to make sure that the control remains bounded

at T0, it is required that

g1jt=T0 = g10(x) and g2jt=T0 = g20(x) on �a ; (10)

where g10(x) and g20(x) are speci�ed functions de�ned on �a. Commonly, one chooses

g10(x) = g20(x) = 0.

2.2. The objective functional and the optimization problem

Assume that �s is a �nite, connected part of the lower boundary [x � 0, y = 0] which

is disjoint from �a and that (Ta; Tb) is a time interval such that 0 � Ta < Tb � T . Then,

consider the functional

J (u; v;p; g1; g2)
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d�dt+
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d�dt
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�
d�dt+
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2
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Z
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�����@g2@t
����
2

+ jg2j
2

�
d�dt ;

(11)
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where g1 and g2 denote the controls and �1(t; x) and �2(t; x) are given functions de�ned on

(Ta; Tb)��s. Note that since �s is part of the lower boundary of the channel or boundary-

layer wall, �@u=@y and �p + 2�@v=@y are the shear and normal stresses, respectively,

exerted by the uid on the bounding wall along �s and thus �1 and �2 may be interpreted

as given shear and normal stresses, repectively. Then, the boundary segment �s can be

thought of as a sensor which measures the stresses on the wall. Thus, in (11), �s is the

part of the boundary � along which one wishes to match the shear and normal stresses to

the given functions �1 and �2, respectively, and (Ta; Tb) is the time interval over which this

matching is to take place. (There are no di�lculties, other than notational, introduced if

one wishes to match each component of the stress vector over a di�erent boundary segment

and/or over a di�erent time interval.)

The third and fourth terms in (11) are used to limit the size of the control. Indeed, no

bounds are a priori placed on g1 or g2; their magnitudes are limited by adding a penalty to

the stress matching functional de�ned by the �rst two terms in (11). The particular form

that these penalty terms take, i.e, the third and fourth terms in (11), is motivated by the

necessity to limit not only the size of the controls g1 and g2, but also to limit oscillations.

The constants �1, �2, �1, and �2 can be used to adjust the relative importance of the

terms appearing in the functional (11).

The (constrained) optimization problem is given as follows:

�nd u; v; p; g1; and g2 such that the functional J (u; v; p; g1; g2) given
in (11) is minimized subject to the requirement that (1)-(8) and (10) are

satis�ed and, for the boundary-layer ow case, (9) is also sati�ed.

3. THE OPTIMALITY SYSTEM

We �rst consider, in Sections 3.1-3.5, the case of a channel ow; the optimality system

for the boundary layer ow is considered in Section 3.6.

3.1. The Lagrangian Functional

The method of Lagrange multipliers is formally used to enforce the constraints (1)-(3)
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and (5). To this end, the Lagrangian functional

L(u; v; p; g1; g2; û; v̂; p̂; s1; s2)
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(12)

is introduced. In (12), û and v̂ are Lagrange multipliers that are used to enforce the x

and y-components of the momentum equation (1) and (2), respectively, p̂ is a Lagrange

multiplier that is used to enforce the continuity equation (3), and s1 and s2 are Lagrange

multipliers that are used to enforce the x and y-components of the boundary condition

(5), respectively. Note that Lagrange multipliers have not been introduced to enforce the

constraints (4), (6)-(8), and (10), so that these conditions must be required of all candidate

functions u, v, p, g1, and g2.

Through the introduction of Lagrange multipliers, the constrained optimization prob-

lem is converted into the unconstrained problem:

�nd u, v, p, g1, g2, û, v̂, p̂, s1, and s2 satisfying (4), (6)-(8), and (10)

such that the Lagrangian functional L(u; v; p; g1; g2; û; v̂; p̂; s1; s2)

given by (12) is rendered stationary.

In this problem, each argument of the Lagrangian functional is considered to be an inde-

pendent variable (only subject to the constraints (4), (6)-(8), and (10)) so that each may

be varied independently.

The �rst-order necessary condition that stationary points must satisfy is that the �rst

variation of the Lagrangian with respect to each of its arguments vanishes at those points.
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One easily sees that the vanishing of the �rst variations with respect to the Lagrange

multipliers recovers the constraint equations (1)-(3) and (5). Speci�cally,

�L

�û
= 0 =) x-momentum equation (1)

�L

�v̂
= 0 =) y-momentum equation (2)

�L

�p̂
= 0 =) continuity equation (3)
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= 0 =) x-component of the boundary condition (5)

�L

�s2
= 0 =) y-component of the boundary condition (5) ;

where �L=�û denotes the �rst variation of L with respect to û, etc.

3.2. The Adjoint Equations

Next, set the �rst variations of the Lagrangian with respect to the state variables u,

v, and p equal to zero. These result in the adjoint or co-state equations. Note that, since

for the channel ow, candidate solutions must satisfy (4), (6)-(8), and (10), one has that
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�p; �u; �v;
@�u

@x
; and

@�v

@x
! 0 as x!1 for (0; T ) ; and

�g1jt=T0 = �g2jt=T0 = 0 on �a :

(13)

First, consider �L=�p = 0 which yields

�2

Z Tb

Ta

Z
�s

�p

�
�p+ 2�

@v

@y
� �2

�
d� +

Z T

0

Z



�
û
@�p

@x
+ v̂

@�p

@y

�
d
dt = 0

for arbitrary variations �p in the pressure. Applying Gauss' theorem then yields that

�2

Z Tb

Ta

Z
�s

�p

�
�p+ 2�

@v

@y
� �2

�
d�

�

Z T

0

Z



�p

�
@û

@x
+

@v̂

@y

�
d
dt+

Z T

0

Z
�

�p(ûn1 + v̂n2) d�dt = 0

11



where n1 and n2 denote the x and y components, respectively, of the outward normal to


 along �. Choosing variations �p that vanish on the boundary � but which are arbitrary

in the interior 
 of the ow domain yields that

@û

@x
+

@v̂

@y
= 0 on (0; T ) � 
: (14)

Now choosing variations �p that are arbitrary along the boundary � yields that

ûn1 + v̂n2 =

8>>>>>>><
>>>>>>>:

0 on

8>>><
>>>:

(0; T ) � �n�s

(0; Ta)� �s

(Tb; T )� �s

� �2

�
�p+ 2�

@v

@y
� �2

�
on (Ta; Tb)� �s ;

(15)

where �n�s denotes the boundary � with �s deleted. We note that in the above derivation

of (14) and (15), as in the derivations found below, the boundary integrals at in�nity do

not make any contribution due to the fourth equation of (13).

Next, consider �L=�v = 0 which yields

��2

Z Tb

Ta

Z
�s

2�
@�v

@y

�
�p+ 2�

@v

@y
� �2

�
d�

+

Z T

0

Z



�
û�v

@u

@y
� �û

@2�v

@x@y
+ p̂

@�v

@y

�
d
dt

+

Z T

0

Z



v̂

�
@�v

@t
+ u

@�v

@x
+ �v

@v

@y
+ v

@�v

@y
� �

@2�v

@x2
� 2�

@2�v

@y2

�
d
dt

+

Z T1

T0

Z
�a

s2�vd�dt+

Z T0

0

Z
�a

s2�vd�dt+

Z T

T1

Z
�a

s2�vd�dt = 0 :

Applying Gauss' theorem enough times to remove all derivatives from the variation �v in

12



the integrals on 
 yields

��2

Z Tb

Ta

Z
�s

2�
@�v

@y

�
�p+ 2�

@v

@y
� �2

�
d�

+

Z T

0

Z



�v

�
�
@v̂

@t
� v̂

@u

@x
� v̂

@v

@y
+ û

@u

@y
+ v̂

@v

@y

� u
@v̂

@x
� v

@v̂

@y
�

@p̂

@y
� �

@2û

@x@y
� �

@2v̂

@x2
� 2�

@2v̂

@y2

�
d
dt

+

Z



(v̂�v)jt=Td


+

Z T

0

Z
�a

�v

�
s2 + p̂n2 + v̂un1 + v̂vn2 + �

@û

@y
n1 + �

@v̂

@x
n1 + 2�

@v̂

@y
n2

�
d�dt

��

Z T

0

Z
�

�
v̂
@�v

@x
n1 + 2v̂

@�v

@y
n2 + û

@�v

@x
n2

�
d�dt = 0 ;

(16)

where we have used (13) to eliminate boundary integrals along �i, �w and as x!1 and

an integral over 
 at t = 0. First, variations �v that vanish at t = 0, t = T , and in a

neighborhood of � are chosen, but which are otherwise arbitrary. Such a choice implies

that all boundary integrals in (16) vanish giving

�
@v̂

@t
+û

@u

@y
+ v̂

@v

@y
� u

@v̂

@x
� v

@v̂

@y
�

@p̂

@y

��
@

@x

�
@û

@y
+

@v̂

@x

�
� �

@

@y

�
2
@v̂

@y

�
= 0 in (0; T ) � 
 ;

(17)

where equation (3) is used to e�ect a simpli�cation. Next, variations that vanish in a

neighborhood of �, but which are otherwise arbitrary, are chosen to obtain

v̂jt=T = 0 in 
 : (18)

Now, along �, �v and @�v=@nmay be independently selected, provided that (13) is satis�ed,

where @=@n denotes the derivative in the direction of the outward normal to 
 along �. If

�v = 0 and @�v=@n varies arbitrarily along �, then

v̂ =

8>>>>>>><
>>>>>>>:

0 on

8>>><
>>>:

(0; T ) � �n�s

(0; Ta) � �s

(Tb; T ) � �s

�2

�
�p+ 2�

@v

@y
� �2

�
on (Ta; Tb) � �s :

(19)

13



To see this, note that along the inow, �i, n2 = 0 and @=@n = �@=@x while along the top

and bottom boundaries n1 = 0, @=@n = �@=@y, respectively, and, since �v = 0, @�v=@x =

0. Note that (15) and (19) agree on the boundary segments where they simultaneously

apply. Finally, �v is arbitrarily chosen along �a to obtain

s2 = �p̂n2 � v̂(un1 + vn2) � �

�
@û

@y
+

@v̂

@x

�
n1 � 2�

@v̂

@y
n2 on (0; T ) � �a : (20)

Next, consider �L=�u = 0 which yields

��1

Z Tb

Ta

Z
�s

�
@�u

@y

�
�
@u

@y
� �1

�
d�

+

Z T

0

Z



û

�
@�u

@t
+ u

@�u

@x
+ �u

@u

@x
+ v

@�u

@y
� 2�

@2�u

@x2
� �

@2�u

@y2

�
d
dt

+

Z T

0

Z



�
v̂�u

@v

@x
� �v̂

@2�u

@x@y
+ p̂

@�u

@x

�
d
dt+

Z T

0

Z
�a

s1�u d�dt = 0 :

Applying Gauss' theorem enough times to remove all derivatives from the variation �u in

the integrals on 
 yields

��1

Z Tb

Ta

Z
�s

�
@�u

@y

�
�
@u

@y
� �1

�
d�

+

Z T

0

Z



�u
�
�
@û

@t
� û

@u

@x
� û

@v

@y
+ û

@u

@x
+ v̂

@v

@x

�u
@û

@x
� v

@û

@y
�

@p̂

@x
� 2�

@2û

@x2
� �

@2û

@y2
� �

@2v̂

@x@y

�
d
dt

+

Z



(û�u)jt=Td


+

Z T

0

Z
�a

�u

�
s1 + p̂n1 + ûun1 + ûvn2 + 2�

@û

@x
n1 + �

@û

@y
n2 + �

@v̂

@x
n2

�
d�dt

��

Z T

0

Z
�

�
2û

@�u

@x
n1 + û

@�u

@y
n2 + v̂

@�u

@y
n1

�
d�dt = 0 :

Applying to this equation the same process that led from (16) to (17)-(20) yields

�
@û

@t
+û

@u

@x
+ v̂

@v

@x
� u

@û

@x
� v

@û

@y
�

@p̂

@x

��
@

@x

�
2
@û

@x

�
� �

@

@y

�
@û

@y
+

@v̂

@x

�
= 0 in (0; T )� 
 :

(21)

14



ûjt=T = 0 in 
; (22)

û =

8>>>>>>><
>>>>>>>:

0 on

8>>><
>>>:

(0; T )� �n�s

(0; Ta) � �s

(Tb; T ) � �s

�1

�
�
@u

@y
� �1

�
on (Ta; Tb)� �s ;

(23)

and

s1 = �p̂n1 � û(un1 + vn2)� 2�
@û

@x
n1 � �

�
@û

@y
+

@v̂

@x

�
n2 on (0; T )� �a : (24)

In deriving (23) we have used the assumption that �s is part of the lower boundary of the

channel so that along �s we have that n2 = �1. Again, there is no conict between (15)

and (23) along boundary segments on which both apply.

3.3. The Optimality Conditions

The only �rst-order necessary conditions left to consider are �L=�g1 = 0 and �L=�g2 =

0. (These conditions are usually called the optimality conditions.) Now, since all candidate

functions g1 and g2 must statisfy (10), it follows that �g1 = 0 and �g2 = 0 at t = T0. Then,

�L=�g2 = 0 yields that

�2

Z T1

T0

Z
�a

�
@g2

@t

@�g2

@t
+ g2�g2

�
d�dt+

Z T1

T0

Z
�a

s2�g2 d�dt = 0 :

Applying Gauss' theorem to remove all derivatives from the variation �g2 yields

Z T1

T0

Z
�a

�g2

�
�
@2g2

@t2
+ g2 +

1

�2
s2

�
d�dt+

Z
�a

�
�g2

@g2

@t

����
t=T1

d� = 0 ;

where the fact that �g2jt=T0 = 0 has been used. Choosing variations �g2 that vanish at

t = T1 but which are otherwise arbitrary yields

�
@2g2

@t2
+ g2 = �

1

�2
s2 on (T0; T1)� �a

or, using (20),

�
@2g2

@t2
+ g2 = �

1

�2

�
p̂+ 2�

@v̂

@y

�
on (T0; T1) � �a ; (25)
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where (19) and the assumption that �a is part of the lower boundary so that, along �a,

n1 = 0 and n2 = �1 have been used. Now, choosing variations that are arbitrary at t = T1

yields that @g2=@t = 0 along �a at t = T1 so that, invoking (10), g2(t; x) satis�es

g2jt=T0 = g20(x) and
@g2

@t

���
t=T1

= 0 on �a : (26)

Note that, given p̂ and v̂, (25)-(26) constitute, at each point x 2 �a, a two-point boundary

value problem in time over the interval (T0; T1).

In a similar manner, setting �L=�g1 = 0 yields that

�
@2g1

@t2
+ g1 = �

1

�1

�
�
@û

@y

�
on (T0; T1)� �a (27)

and

g1jt=T0 = g10(x) and
@g1

@t

���
t=T1

= 0 on �a : (28)

3.4. Finite Computational Domains

In the computations, the semi-in�nte domain 
 (we are still only considering the

channel ow case) is replaced by a �nite domain 
C de�ned by the introduction of the

outow boundary �o given by [x = L, 0 � y � h]. Thus, we have that 
C is the rectangle

[0 � x � L, 0 � y � h]. We treat the ouow by replacing (1) and (2) with

@u

@t
+ u

@u

@x
+ v

@u

@y
+

@p

@x
� �a(x)

@2u

@x2
� �

@2u

@y2
= 0 in (0; T ) � 
C; (29)

and
@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
� �a(x)

@2v

@x2
� �

@2v

@y2
= 0 in (0; T )� 
C ; (30)

respectively, where a(x) is a smooth function that is unity in the bulk of the ow, that

vanishes in a neighborhood of the outow boundary �o, and which is smooth throughout

the ow. This treatment of the outow does not require the imposition of boundary

conditions along the outow boundary �o (Streett & Macaraeg, 1989) zone technique.

A similar treatment of the adjoint variables should have required consideration of

an in�nite domain [�1 < x < 1, 0 < y < h]. If this had been done, the boundary

conditions (19) and (23) would not have been obtained along the inow �i. In fact, the

inow boundary �i for the state equation is the outow boundary for the adjoint equations

and, conversely, the outow boundary �o for the state equation is the inow boundary for

16



the adjoint equations. This is easily seen by comparing the leading inertial terms of the

state and adjoint momentum equations (1), (2), (21), and (17), i.e., with t increasing

@u

@t
+ u

@u

@x
+ v

@u

@y
and

@v

@t
+ u

@v

@x
+ v

@v

@y

and with t decreasing

�
@û

@t
� u

@û

@x
� v

@û

@y
and �

@v̂

@t
� u

@v̂

@x
� v

@v̂

@y
:

Now, on both �i and �o we have that u > 0 and v � 0 which is why �i is an inow

boundary and �o is an outow boundary for the state. On the other hand, the fact that t

is decreasing in the adjoint equations implies that now �i is an outow boundary and �o

is an inow boundary for those equations.

Thus, to be consistent with the treatment of the state equations, the adjoint outow

�i should be treated in a manner similar to the above treatment of the state outow �o.

Thus, the boundary conditions (19) and (23) are not imposed along �i and (21) and (17)

are replaced by

�
@û

@t
+ û

@u

@x
+v̂

@v

@x
� u

@û

@x
� v

@û

@y
�

@p̂

@x

��b(x)
@2û

@x2
� �

@2û

@y2
= 0 in (0; T )� 
C

(31)

and

�
@v̂

@t
+ û

@u

@y
+v̂

@v

@y
� u

@v̂

@x
� v

@v̂

@y
�

@p̂

@y

��b(x)
@2 v̂

@x2
� �

@2v̂

@y2
= 0 in (0; T ) � 
C ;

(32)

respectively, where b(x) is a smooth function that is unity in the bulk of the ow, that

vanishes in a neighborhood of the adjoint outow boundary �i, and which is smooth

throughout the ow. This treatment of the adjoint outow does not require the imposition

of any boundary conditions for the adjoint variables along �i. Finally, since �o is an inow

boundary for the adjoint equations, one should specify boundary conditions on the adjoint

variables along that boundary segment. It can be seen that the proper conditions are given

by

û = 0 and v̂ = 0 on (0; T ) � �o : (33)
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3.5. The Optimality System for Channel Flow

We now have in hand the full optimality system for channel ow whose solutions

determine the optimal states, controls, and adjoint states. These are given by (3)-(7),

(14), (15), (18)-(20), and (22)-(33), where in (19) and (23) we do not impose the boundary

conditions along �i. Since (20) and (24) merely serve to determine the uninteresting

Lagrange multipliers s2 s1, respectively, they can be ignored. Re-ordering and gathering

the remaining equations, posed on the computational domain 
C, yields the optimality

system
@u

@t
+ u

@u

@x
+ v

@u

@y
+

@p

@x
� �a(x)

@2u

@x2
� �

@2u

@y2
= 0 in (0; T ) � 
C ; (34)

@v

@t
+ u

@v

@x
+ v

@v

@y
+

@p

@y
� �a(x)

@2v

@x2
� �

@2v

@y2
= 0 in (0; T ) � 
C ; (35)

@u

@x
+

@v

@y
= 0 in (0; T ) � 
C ; (36)

�
u

v

������
t=0

=

�
u0
v0

�
in 
C ; (37)

�
u

v

������
�a

=

8>><
>>:

�
g1
g2

�
in (T0; T1)

�
0
0

�
in (0; T0) and (T1; T ) ;

(38)

�
u

v

������
�i

=

�
ui
vi

�
in (0; T ) ; (39)

�
u

v

������
�w

=

�
0
0

�
in (0; T ) ; (40)

�
@û

@t
+ û

@u

@x
+ v̂

@v

@x
� u

@û

@x
� v

@û

@y
�

@p̂

@x
� �b(x)

@2û

@x2
� �

@2û

@y2
= 0 in (0; T )� 
C ; (41)

�
@v̂

@t
+ û

@u

@y
+ v̂

@v

@y
� u

@v̂

@x
� v

@v̂

@y
�

@p̂

@y
� �b(x)

@2 v̂

@x2
� �

@2v̂

@y2
= 0 in (0; T )� 
C ; (42)

@û

@x
+

@v̂

@y
= 0 in (0; T ) �
C ; (43)

�
û

v̂

������
t=T

=

�
0
0

�
in 
C ; (44)
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�
û

v̂

�
=

�
0

0

�
on

8>>>>>>>><
>>>>>>>>:

(0; T ) � �o

(0; T ) � �a

(0; T ) � �wn�s

(0; Ta) � �s

(Tb; T ) � �s ;

(45)

�
û

v̂

�
= �

0
@ �1

�
� @u
@y
� �1

�

�2

�
�p+ 2� @v

@y
� �2

�
1
A on (Ta; Tb)� �s ; (46)

�
@2g1

@t2
+ g1 = �

1

�1

�
�
@û

@y

�
on (T0; T1) � �a ; (47)

g1jt=T0 = g10(x) and
@g1

@t

���
t=T1

= 0 on �a ; (48)

�
@2g2

@t2
+ g2 = �

1

�2

�
p̂+ 2�

@v̂

@y

�
on (T0; T1) � �a ; (49)

and

g2jt=T0 = g20(x) and
@g2

@t

���
t=T1

= 0 on �a ; (50)

where �w denotes, in the channel ow case, the upper and lower boundaries of the �nite

channel except for the segment �a.

The state equations (34)-(40) are driven by the given initial velocity (u0; v0), the given

inow velocity (ui; vi), and the controls (g1; g2). Indeed, the purpose of this study is to

determine g1 and g2 that optimally counteracts instabilities created upstream of �a. The

adjoint equations (41)-(46) are homogeneous execept for the boundary condition (46) along

�s, the part of the boundary along which we are trying to match the stresses. The data in

that boundary condition is exactly the discrepancy between the desired stresses �1 and �2

and the stresses �@u=@y and �p+ 2�@u=@y along �s, weighted by the factors �1 and �2.

The equations for the controls (47)-(50) are driven by the negative of the adjoint stresses

along �a, the part of the boundary along which we apply the control, weighted by the

factors 1=�1 and 1=�2. Of course this division into equations for the state, the adjoint

state, and the control is really obscured by the fact that (34)-(50) are all intimitately

coupled.
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3.6. The Optimality System for Boundary-Layer Flow

Following a similar process to that used in Sections 3.1-3.5 for the channel ow case,

one may derive an optimality system for the boundary layer ow case. The only di�erence

is that in the latter case �w denotes only the lower boundary with �a excluded and that

the additional boundary condition (9) along the upper boundary �e must be accounted

for.

With the new interpretation for �w, one can still de�ne the Lagrangian functional

(12) and use the constraints (13) on allowable variations; however, due to (9), allowable

variations are further constrained by

�uj�e =

�
�p � 2�

@�v

@y

����
�e

= 0 for (0; T ) : (51)

Note that (51) implies that, along �e, one may not choose the variations in �p and @�v=@y

independently. Considering, simultaneously, variations in p, v, and @v=@y along �e, one

obtains

Z T

0

Z
�e

v̂

�
�p� 2�

@�v

@y

�
d�dt

+

Z T

0

Z
�e

�v

�
p̂+ 2�

@v̂

@y
+ v̂v

�
d�dt�

Z T

0

Z
�e

û
@�v

@x
d�dt = 0 :

(52)

The �rst integral in (52) vanishes due to (51). One can show that

û = 0 on (0; T ) � �e (53)

so that the third integral in (52) vanishes as well. Then, letting �v be arbitrary along �e

in (52) yields

p̂+ 2�
@v̂

@y
+ vv̂ = 0 on (0; T ) � �e : (54)

The resulting optimality system for the boundary layer ow case is given by (9),

(34)-(50), (53), and (54), where in (40) and (45) �w notes the �nite computational lower

boundary with �a excluded and in (53) and (54) �e denotes the �nite computational

uppper boundary.
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4. NUMERICAL EXPERIMENTS

Here, the optimal control methodology developed in Section 3 is applied to a boundary

layer ow having a single instability wave that can be characterized by a discrete frequency

within the spectrum. We are not concerned with the details of how disturbances are

ingested into the boundary layer; the underlying assumption here is that natural transition

involves some dominant disturbances that can be characterized by waves, and in fact,

in the present study, by a single wave. (In a subsequent study, controlling transitions

which consist of unsteady, three-dimensional instabilities will be explored.) As described

in Joslin et al. (1995) (among others), these discrete small-amplitude instabilities can be

suppressed through wave cancellation (WC) using known exact information concerning the

wave. Hence, the optimal control is \known" for validation of the present DNS/optimal

control theory numerical approach in which the instability is to be suppressed without any

a priori knowledge of said instability.

The formidable coupled system (9), (34)-(50), (53), and (54) is solved in an iterative

manner. First, a guess is made for the controls g1 and g2 (typically one starts with no

control, i.e., g1 = g2 = 0) and then the sub-system (9) and (34)-(40) is solved for the

state variables, i.e., the velocity �eld (u; v) and pressure p. Then, using these velocity and

pressure �elds, the sub-system (41)-(46), (53), and (54) is solved for the adjoint or co-state

variables (û; v̂) and p̂. Then, using these adjoint variables, the controls g1 and g2 are then

found by solving the sub-system (47)-(50). The procedure is repeated until satisfactory

convergence is achieved.

The nonlinear, unsteady Navier-Stokes equations and linear adjoint Navier-Stokes

equations are solved by direct numerical simulation (DNS) of disturbances that evolve

spatially within the boundary layer. The spatial DNS approach involves spectral and

high-order �nite-di�erence methods (Joslin et al 1992, 1993) and a three-stage Runge-

Kutta method (Williamson 1980) for time advancement. The inuence-matrix technique

is employed to solve the resulting pressure equation (Danabasoglu, Biringen & Streett 1991

and Street & Hussaini 1991). Disturbances are forced into the boundary layer by unsteady

suction and blowing through a slot in the wall. At the outow boundary, the bu�er-domain

technique of Streett & Macaraeg (1989) is used.

In the present study only normal injection or suction control is allowed, so that we

set g1 = 0 in (38), �1 = 0 in the functional (11), and ignore (47) and (48). Also, we only

match the normal stress along �s so that we choose �1 = 0 in the functional (11) and in

(46).
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4.1. Computational Parameters

For the computations, the grid has 401 streamwise and 41 wall-normal points. The

free stream boundary is located 75��o from the wall, and the streamwise length is 224��o

which is equal to approximately 8 TS wavelengths. The nondimensional frequency for

the forced disturbance is F = !=R � 106 = 86; the forcing amplitude is vf = 0:1%.

The Reynolds number based on the inow displacement thickness (��o) is R = 900. (The

boundary segment along which disturbance forcing and control is e�ected as well as where

stress matching occurs are located within the unstable region of the linear stability neutral

curve.) A time-step size corresponding to 320 steps per period Tp is chosen for a three-

stage Runge-Kutta method. Based on the disturbance frequency, a characteristic period

can be de�ned as Tp = 2�=! = 81:1781; the resulting time-step size is then �t = 0:2537.

To complete one period of the active-control simulation process, 0.75 minutes on the

Cray C-90 are required using a single processor. Note, two periods of cost (Ta ! Tb and

Tb ! Ta) are required to complete one iteration of the DNS/adjoint system. Although in

general any time interval may be speci�ed for Ta ! Tb, this study uses integer increments

of the period (Tp) for simplicity. Hence, Ta ! Tb = 2Tp would cost 4Tp in computations,

or roughly 3 min of C-90 time per iteration. Because only a single small-amplitude wave

(linear) is forced, the above grid is more than adequate; however, a grid re�nement was

performed and produced results equivalent to the results reported here.

For this study, the disturbance forcing slot �f , the control or actuator ori�ce �a,

and the matching or sensor segment �s have equal length 4:48��o. The forcing is centered

downstream at 389:62��o (the Reynolds number based on the displacement thickness at

that location is R = 1018:99), the actuator is centered at 403:62��o (R = 1037:13), and the

sensor is centered at 417:62��o (R = 1054:97). These separation distances were arbitrarily

chosen for this demonstration. In practice, the control and matching segments should have

a minimal separation distance so that the pair can be packaged as a single unit, or bundle,

for distributed application of many bundles.

4.2. Results

All simulations allow the ow �eld to develop for one period, i.e., from t = 0! Ta = Tp

before control is initiated. In the �rst series of simulations, the interval during which control

is applied is arbitrarily chosen to be Ta ! Tb = 2Tp. Based on �1 = �1 = 0, �2 = 1, and

�2 = 10, the wall-normal velocity and disturbance energy results are shown in Figure 2

for the series of iterations leading to convergence. Figure 3 shows the convergence history
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for the actuator g2 and measured normal stress �p+ 2�@v=@y as a function of time. The

velocities are obtained at a �xed distance from the wall corresponding to 1:18��o and the

measure of energy is given by E =
R
y
u2+v2; both velocity and energy are obtained at the

�xed time Tb. Convergence is obtained with 8 iterations; however, for all practical purposes,

the results with 4 iterations could be used. The results demonstrate that a measure of

wave cancellation can be obtained from the DNS/control theory system. The wall-normal

amplitude of the modi�ed wave at R = 1092:5 is 40 percent of the uncontrolled wave; the

control without optimizing the choice of �1, �2, �1, and �2 has led to a 60 percent decrease

in the amplitude of the travelling wave. Clearly, Figure 2 shows that a net reduction of

the disturbance energy is obtained by energy input due to the control. This results in a

delay of transition by-way-of a suppression of the instability evolution.

In the simulation, the control has been applied from Ta ! Tb only; therefore, for

t > Tb, (5) or (38) indicate that the actuation is discontinued. Figures 4 and 5 compare

the converged results (C1=8th iteration of Figures 2 and 3) with results for one period

after control t = Tb + Tp . The measured disturbance tends toward the uncontrolled so-

lution when the actuation is discontinued (as expected); because the control was applied

for Ta � Tp ! Tb = 2Tp, 2 periods are required after Tb before the computed solution

in the window exactly matches the uncontrolled solution. The pro�les of uncontrolled,

control, and discontinued control ows are shown in Figure 5 at the downstream location

corresponding to R = 1073:2. Clearly, the control only removes energy from the sys-

tem (decreases the wave instability amplitude); the resulting pro�les retain the expected

instability pro�le shape.

The e�ect of varying the window size (Ta; Tb) is shown in Figures 6 and 7. The

previous converged results (C1) are shown with converged results (C2) for the extended

window (Ta = Tp ! Tb = 3Tp). The results are identical for the �rst two periods of

time and indicate that extending the amount of time for control serves to extend control

only. This result also indicates that one can solve for the optimal control over a given time

interval (Ta; Tb) by breadking up that inerval and solving for the optimal control over a

series of smaller subintervals. This approach usually leads to substantial savings in CPU

and memory costs.

Figure 7 reveals an additional insight about the present DNS/control theory. The re-

sulting optimal control g2 approaches the desired wave-cancellation time-periodic solution

as the temporal length (Ta; Tb) is increased. This is convincing evidence that the present

self-contained methodology is valid.
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Figures 8 and 9 show velocity contours of the uncontrolled and controlled (C2) insta-

bility waves. Both results indicate that the instability wave is growing with downstream

distance (left-to-right); however, the C2 contours are signi�cantly reduced in magnitude.

The furthest downstream levels of C2 approach the level of the uncontrolled wave at the

furthest upstream location. If the growth rates are assumed to be the same, then a three-

wavelength transition delay has been achieved by applying the optimal control.

The instability wave resulting from wave-cancellation (WC) is shown with the control

(C2) in Figures 10 and 11. For the present comparison, the amplitude of the actuation

for WC was adjusted until nearly exact wave cancellation was achieved. Although the

DNS/control theory did not achieve the same level of energy removal, the similar e�ect of

WC was achieved without any a priori knowledge of the instability. Also, note that Figure

11 shows that the optimal control of the control theory has nearly the exact phase charac-

teristics as WC and only lacks the necessary amplitude for additional wave cancellation.

These encouraging results suggest that by the appropriate selection of �1, �2, �1, and �2,

the optimal control can be made nearly as e�ective method of instability suppression as

exact wave cancellation.

From the wave-cancellation study of Joslin et al (1995), the relationship between

amplitude of the actuator (va) with resulting instabilty can be shown in Figure 12. A

similar result was shown in the channel ow wave-cancellation study in Biringen (1984).

The trend indicates, that beginning with a small actuation amplitude, as the actuation

level is increased, the amount of wave cancellation (energy extraction from the disturbance)

increases. At some optimal actuation, nearly exact wave cancellation is achieved for the

instability wave. As the actuation amplitude further increases the resulting instability

amplitude increases; this was clearly explained in Joslin et al (1995) to occur because in

the wave superposition process, the actuator wave becomes dominant over the forced wave.

At this point, the resulting instability undergoes a phase shift corresponding to the phase of

the wave generated by the actuator. The relationship depicted in Figure 12 is encouraging

for the DNS/optimal control theory approach and suggests that a gradient descent type

algorithm might further enhance the wave suppression capability of the present approach.

Namely, an approach for the optimal selection of �1, �2, �1, and �2 might lead to a more

useful theoretical/computational tool for ow control.

To simply demonstrate this concept, Lagrange interpolation (or perhaps extrapola-
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tion) is introduced for �1 and �2 based on imposed values for �1 and �2:

�n+11;2 =
�n1;2(�

�

1;2 � �n�1
1;2 )� �n�1

1;2 (��1;2 � �n1;2)

(�n1;2 � �n�11;2 )
; (55)

where ��1;2 are some desired values of the stress components and �n1;2 are the stress com-

ponents based on the choice �n1;2. Although ��1 and ��2 may be equivalent to the target

values �1 and �2 in the functional (11), this may lead to signi�cant over/under shoots for

the interation process. Instead, ��1 and ��2 is the incremental decrease, or target value, for

interpolation to more desirable �1 and �2 values. To illustrate this process, the �2 = 10

(C2) and �2 = 11 control results are obtained with the iteration procedure. The measures

of normal stress are somewhat arbitrarly obtained at some time as measured by the sensor

or matching segment �s; the values of the normal stress are given in the Table 1. These

values are used for a desired normal stress � �2 , which in this case is 65% of the �2 = 11

results.

�2 normal stress

10 9:369� 10�6

11 8:814� 10�6

Table 1. Normal stress for two values of �2.

Using the results for �2 = 10 and �2 = 11 in (55) yields the value �2 = 16:5 which

is used in a simulation to obtain a greater degree of instability suppression. The WC

results and the enhanced optimal control (C3) solution are shown in Figures 13 and 14.

This interpolation approach based on relationship of Figure 12 indicates that optimizing

�2 has led to results very close to WC. The solutions di�er somewhat near t = Ta and

t = Tb because of the conditions (48) and (50) that serve to control the levels of g1 and

g2. For all practical purposes, the solutions obtained with the present DNS/control theory

methodology yield the desired ow control features without prior knowledge of the forced

instability.

The adjoint system requires that the velocity �eld (u; v) obtained from the Navier-

Stokes equations (34)-(40) be known for all time. For the iteration sequence and a modestly

course grid, 82 Mbytes of disk (or runtime) space are required to store the velocities at

all time steps and for all grid points. For Ta ! Tb = 3Tp, 246 Mbytes are necessary

for the computation. Clearly for three-dimensional problems the control scheme becomes

prohibitively expensive. Therefore, a secondary goal of this study is to determine if this

limitation can be elliminated.
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Because the characteristics of the actuator (g1 and g2) and resulting solutions are

comparable to WC, some focus should be placed on elliminating the enormous memory

requirements discussed above. This limitation can easily be removed if the ow-control

problem involves small-amplitude unsteadiness (or instabilities). The time-dependent coef-

�cients of the adjoint system (41)-(42) reduce to the steady-state solution and no addition

memory is required over the Navier-Stokes system in terms of coe�cients. This has been

veri�ed by a comparison of a simulation with steady coe�cients compared with the C2

control case. The results shown in Figure 15 are identical (as expected). Additionally,

if the instabilities have small amplitudes, then a linear Navier-Stokes solver can be used

instead of the full nonlinear solver, which was used in the present study. This linear system

would be very useful for the design of ow-control systems. However, if the instabilities in

the ow have su�cient amplitude to interact nonlinearly, then some measure of unsteady

coe�cient behavier is likely required. Depending on the amplitudes, the coe�cients saved

at every time-step may be replaced with storing coe�cients every 10 or more time-steps

thereby reducing the memory requirements by an order of magnitude. This hypothesis

will require validation in a future study.

CONCLUSIONS

The coupled Navier-Stokes equations, adjoint Navier-Stokes, and optimality condition

equations were solved and validated for the ow-control problem of instability wave sup-

pression in a two-dimensional, at plate, boundary layer. By solving the above system,

optimal controls were determined that met the objective of minimizing the perturbation

normal stress along a portion of the bounding wall. As a result, the optimal control

was found to be an e�ective means for suppressing two-dimensional, unstable Tollmien-

Schlichting travelling waves. The results indicate that the DNS/control theory solution

is comparable to the wave-cancellation result but, unlike the latter, requires no a priori

knowledge of the instability characteristics.
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Figure 1. Schematic of active ow control using optimal control theory.
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Figure 2. Convergence of disturbance wall-normal velocity and energy with downstream

distance for control in at-plate boundary-layer ow. (Velocity signal at y = 1:18��o from

wall; T1 � T0 = 2Tp.)

31



Figure 3. Convergence of actuator response and sensor-measured shear stress with discrete

time.
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Figure 4. Disturbance velocities with downstream distance for no control (T=4), control

(C1), and after control is used and turned-o� (C=4) in at-plate boundary-layer ow.

(Velocity signal at y=1:18��o from wall.)
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Figure 5. Disturbance velocity pro�les for no control (T=4), contro l(C1), and after control

is used and turned-o� (C=4) in at-plate boundary-layer ow.
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Figure 6. Disturbance velocity with downstream distance for no control (T=4) and control

(C1 for T1�T0 = 2Tp and C2 for T1�T0 = 3Tp) in at-plate boundary-layer ow. (Velocity

signal at y = 1:18��o from wall.)

35



Figure 7. Actuator response and sensor-measured shear stress for controls (C1 for T1�T0 =

2Tp and C2 for T1 � T0 = 3Tp) with discrete time.
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(a)

(b)

Figure 8. Contours of (a) u and (b) v velocities for no control in at-plate boundary-layer

ow. (Contours: 7:5� 10�5 to �7:5� 10�5; intensity increases left-to-right)
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(a)

(b)

Figure 9. Contours of (a) u and (b) v velocities for control in at-plate boundary-layer

ow. (Contours: 7:5� 10�5 to �7:5� 10�5.)
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Figure 10. Disturbance velocity and energy with downstream distance for no control

(T=4), control (C2), and wave cancellation (WC) in at-plate boundary-layer ow. (Ve-

locity signal at y = 1:18��o from wall; T1 � T0 = 3Tp.)
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Figure 11. Actuator response and sensor-measured shear stress for control (C2) and wave

cancellation (WC) with discrete time.
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Figure 12. Disturbance velocity resulting from variations in actuator amplitude from

simulations in Joslin et al (1995).
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Figure 13. Disturbance velocity and energy with downstream distance for no control

(T=4), control (C2), control (C3), and wave cancellation (WC) in at-plate boundary-

layer ow. (Velocity signal at y = 1:18��o from wall; T1 � T0 = 3Tp.)
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Figure 14. Actuator response and sensor-measured shear stress for control (C2), control

(C3), and wave cancellation (WC) with discrete time.
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Figure 15. Disturbance velocity and energy with downstream distance for no control

(T=4), control (C2), and control (C4-steady coe�cients) in at-plate boundary-layer ow.

(Velocity signal at y = 1:18��o from wall; T1 � T0 = 3Tp.)
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